For example, if the circle’s radius is 10 cm, your formula will look like this: arc length=2π(10)(θ360){\displaystyle {\text{arc length}}=2\pi (10)({\frac {\theta }{360}})}.
For example, if the arc’s central angle is 135 degrees, your formula will look like this: arc length=2π(10)(135360){\displaystyle {\text{arc length}}=2\pi (10)({\frac {135}{360}})}.
For example:2π(10)(135360){\displaystyle 2\pi (10)({\frac {135}{360}})}2(3. 14)(10)(135360){\displaystyle 2(3. 14)(10)({\frac {135}{360}})}(62. 8)(135360){\displaystyle (62. 8)({\frac {135}{360}})}
For example:(62. 8)(135360){\displaystyle (62. 8)({\frac {135}{360}})}(62. 8)(. 375){\displaystyle (62. 8)(. 375)}
For example:(62. 8)(. 375){\displaystyle (62. 8)(. 375)}23. 55{\displaystyle 23. 55}So, the length of an arc of a circle with a radius of 10 cm, having a central angle of 135 degrees, is about 23. 55 cm.
For example, if the circle’s radius is 10 cm, your formula will look like this: arc length=θ(10){\displaystyle {\text{arc length}}=\theta (10)}.
For example, if the arc’s central angle is 2. 36 radians, your formula will look like this: arc length=2. 36(10){\displaystyle {\text{arc length}}=2. 36(10)}.
For example:2. 36(10){\displaystyle 2. 36(10)}=23. 6{\displaystyle =23. 6}So, the length of an arc of a circle with a radius of 10 cm, having a central angle of 23. 6 radians, is about 23. 6 cm.